Artificial Intelligence

Uninformed Search

Overview

e Searching for Solutions

e Uninformed Search
— BFS
— UCS
— DFS
— DLS
— IDS

Searching for Solutions

Tree Search Algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Tree Search Example

Implementation:
State vs. Nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x) and state

States do not have parents, children, depth, or path cost!
parent, action
A

State || 5 ||| 4 Node depth = 6
g=56
6 1 8
=t te
71Ul 3lll 2 sta

The EXPAND function creates new nodes, filling in the various fields and
using the SUCCESSORFE'N of the problem to create the corresponding states.

General Tree Search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node — REMOVE-FRONT{ fringe)
if GOAL-TEST|problem] applied to STATE{node) succeeds return node
fringe + INSERTALL{EXPAND(node, problem), fringe)

function EXPAND{ node, problem) returns a set of nodes

successors +— the empty set

for each action, result in SUCCESSOR-FN[problem|(STATE[node]) do
s+ a new NODE
PARENT-NODE[s] node; ACTION|s| « action; STATE[s| « result
PATH-CO08ST[s] ¢« PATH-C08T[node] + STEP-COST(node, action, s)
DEPTH|[s] « DEPTH[node| + 1
add 5 to successors

return successors

Search Strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?

time complexity—number of nodes generated /expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be 0o0)

Uninformed Search

Uninformed Search Strategies

e Use only the information available in the
problem definition
— Breadth-first search
— Uniform-cost search
— Depth-first search
— Depth-limit search
— Iterative deepening search

Breadth-First Search

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue, that is new successors
go at end

Properties of BFS

Complete?

— Yes. (if b is finite)
Time?

— 1+b+b%+...+b(bd-1)=0(b4*1), exp in d
Space?

— 0O(b91) (keeps every node in memory)
Optimal?

— Yes, if cost = 1 per step; not optimal in general when actions have
different cost

Space is the big problem; can easily generate nodes at
10MB/sec, so 24hrs = 860GB

Uniform-Cost Search

Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost > ¢

Time?7 # of nodes with ¢ < cost of optimal solution, O(b[c*f'ﬂ)
where C* is the cost of the optimal solution

Space?? # of nodes with g < cost of optimal solution, O(b/¢"/¢l)

Optimal?? Yes—nodes expanded in increasing order of g(n)

Depth-First Search

e Expanded deepest unexpanded node
 Implementation:

— Fringe = LIFO queue, i.e. put successors at front

Properties of DFS

Complete?

— No. Fails in infinite-depth spaces, spaces with loops

— Modify to avoid repeated states along path => complete in finite space
Time?

— O(b™), terrible if m is much larger than d, but if solutions are dense,
may be much faster than BFS

Space?

— O(bm), linear space
Optimal?

— No

Depth-Limit Search

e Depth-first search with depth limit L, that is nodes at
depth L have no successors

Depth-Limited search

|s DF-search with depth limit /.
— i.e. nodes at depth / have no successors.
— Problem knowledge can be used

Solves the infinite-path problem.

If | < d then incompleteness results.
If /| > d then not optimal.

Time complexity:

Space complexity: O(bl)
O(bl)

Depth-Limit Search

e Algorithm

Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS{M AKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln /fail/cutoff
cutoff-occurred? + false
if GOAL-TEST|[problem|(STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result «— RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? « true
else if result £ failure then return result
if cutoff-occurred? then return cutoff else return failure

Iterative Deepening Search

e |terative deepening search

— A general strategy to find best depth limit /.
e Goalsis found at depth d, the depth of the shallowest goal-node.

— Often used in combination with DF-search

e Combines benefits of DF- en BF-search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
inputs: problem, a problem

for depth+ 0to o do
result ¢ DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

end

Iterative Deepening Search

Properties of IDS

Complete?? Yes
Time?? (d+ 1B +dbl + (d — 1)B* +... + b2 = O(b%)
Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Numerical comparison for 6 = 10 and d = 5, solution at far right:

N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123, 450
N(BFS} = 10+ 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1, 111, 100

Bidirectional search

Two simultaneous searches from start an goal.
— Motivation: bd/2 4 bd/2 ” bd
Check whether the node belongs to the other fringe before expansion.

Space complexity is the most significant weakness.
Complete and optimal if both searches are BF.

How to search backwards?

\eiaz gl’
#% @

e The predecessor of each node should be efficiently
computable.

— When actions are easily reversible.

Summary of Algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative Bidirection
First cost First limited deepening al search
Complete? | YES* YES* NO YES, YES YES*
ifl>d
Time bd+1 bC*/e pm bl bd bd/2
Space pd+l bCe bm bl bd bd/2
Optimal? YES* YES* NO NO YES YES

Repeated States

Failure to detect repeated states can turn a linear problem into an exponential
onel

Graph Search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed + an empty set
fringe & INSERT({ MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node — REMOVE-FRONT{ fringe)
if GOAL-TEST[problem](STATE[node]) then return node
if STATE[node| is not in closed then
add STATE[node| to closed
fringe « INSERTALL{EXPAND(node, problem), fringe)
end

Summary

e Searching for Solutions

e Uninformed Search
— BFS
— UCS
— DFS
— DLS
— IDS

